Pipet Calibration/Verification Instructions and Reference Tables/Information

Utilize the original pipette documentation or the pipette reference tables to determine the permissible tolerance of the pipette. Document the calibration/verification on the Pipettor Delivery Calibration/Verification Form 400-002-09-F.

- 1. Annotate the pipette setting and tip that is being used.
- 2. Fill the pipette with deionized water and deliver its contents into a pre-weighed container on the analytical balance. Do this for a total of 10 deliveries on the scale Note: for large volumes (1000µl or greater) record each weight separately.
- 3. Record the weight. For increased accuracy it is recommended to add a weight to the scale for very small volumes.
- 4. For verification, repeat this step for a total of 5 total weights and for large volumes 10 individual weights.
- 5. For calibration, adjust pipette as needed and repeat to ensure accurate discharge of weight.
- 6. Determine the average of the weights and ensure it is within allowable tolerances.
- 7. Repeat steps 2 through 7 for each volume that is used for specific pipette. (note: for the Universal PVV-100 pipette test at upper and lower of the user defined range)
- 8. Remove pipette from service if it does not meet required specifications. Document pipette concerns on the Maintenance log and notify supervisor.

Pipet	Tip	Tolerance
Eppendorf Repeater	Fisherbrand 5 ml	±0.8% 0.992 to 1.008
Eppendorf Repeater	Fisherbrand 12.5 ml	±0.7% 2.4825 to 2.5175
Eppendorf Repeater Plus	Combitip advanced Blue	±0.6% 0.994 to 1.006
Eppendorf Repeater Plus	Combitip advanced Green	±0.8% 24.8 to 25.2 and 74.4 to 75.6
Eppendorf Repeater M4	Combitip advanced Blue	±0.6% 0.994 to 1.006
Eppendorf Repeater M4	Combitip advanced Green	±0.8% 24.8 to 25.2 and 74.4 to 75.6
Pipetman 1000	Red box Fisherbrand Clear tip	±3µl 217 to 223
Pipetman 1000	Blue box clear tip	±3.5µl 396.5 to 403.5
Fin 5-50μl	Yellow tip	±1.0% 20 μl: 18.8 μl to 20.2 μl
Finn 50-250 μl	Yellow tip	±1.0% 50 μl: 49.5 μl to - 50.5 μl
Finn 200-1000 μl	Blue tip	± 1.0% 1000: 990 μl to 1010 μl
PVV-100, 50 μl	Yellow tip	±0.6%: 10 µl: 9.94-10.06, 100 µl 99.4-100.6
Diamond 5-50 μl	Clear tip	±0.8%: 20 µl: 18.4-21.6
Diamond 10-100 μl	Yellow tip	± 1.0% 50 μl: 49.5 to - 50.5
Diamond 100-1000 μl	Blue tip	± 1.0% 1000: μl 990 to 1010

Technical data

Combitip	Testing Error limits					
advanced	volume	Error				
		System error	natic	Randor error	n	
		± %	±μL	± %	±μL	
0.1 mL	2 μL	±1.6	±0.032	±3.0	±0.06	
white	20 μL	±1.0	±0.2	±2.0	±0.4	
0.2 mL	4 μL	±1.3	±0.052	±2.0	±0.08	
light blue	40 μL	±0.8	±0.32	±1.5	±0.6	
0.5 mL	10 μL	±0.9	±0.09	±1.5	±0.15	
violet	100 μL	±0.8	±0.8	±0.6	±0.6	
1 mL	20 μL	±0.9	±0.18	±0.9	±0.18	
yellow	200 μL	±0.6	±1.2	±0.4	±0.8	
2.5 mL	50 μL	±0.8	±0.4	±0.8	±0.4	
green	500 μL	±0.5	±2.5	±0.3	±1.5	
5 mL	100 μL	±0.6	±0.6	±0.6	±0.6	
blue	1 000 μL	±0.5	±5.0	±0.25	±2.5	
10 mL	200 μL	±0.5	±1.0	±0.6	±1.2	
orange	2 000 μL	±0.5	±10	±0.25	±5.0	
25 mL	500 μL	±0.4	±2.0	±0.6	±3.0	
red	5 000 μL	±0.3	±15	±0.25	±12.5	
50 mL	1 000 μL	±0.3	±3.0	±0.5	±5.0	
light grey	10 000 μL	±0.3	±30	±0.3	±30	

Diamond 20, 50, 1000 µl

Variable Volume Pipettes

			And the second s				
CAT NO.	Volume Range (µl)	Increment (µl)	Test Volume (µl)	Inaccuracy (±)%	Impre- cision (±)%		
			- 1	2.5	1.5		
VA-100	0.5-10 µl	0.1	5	2	-1		
	111111111111111111111111111111111111111	20702	10	1	0.8		
			0.25	12	- 6		
VA-125	0.1-2.5 µl	0.01	1.25	3	3		
	10-10-10-10-10-1		2.5	2.5	1.6		
			5	2	2		
VA-200	5-50 µl	0.5	25	0.8	0.4		
			50	0.6	0.3		
			50	1	0.4		
VA-300	50-200 µl	1	100	0.8	0.2		
			200	0.6	0.15		
			200	0.9	0.3		
VA-400	200-1000 μl	5	500	0.75	0.25		
	120		1000	0.6	0.2		
	0.0004048 -0		10	3	1.5		
VA-500	10-100 µl	0.5	50	1	0.5		
			100	0.8	0.15		
	CONTRACTOR OF STREET	- 88	100	2	0.7		
VA-600	100-1000 µl	5	500	1	0.4		
			1000	0.6	0.2		

Universal PVV-100 10-100 µl

Range	Volume	Inac	curacy	Impr	ecision
90	μl	±%	μl	cv±%	μl
0.2 µl - 2 µl	2	2	.04	1.2	0.024
0.5 µl - 10 µl	10	1	0.1	0.5	0.05
2 µl - 20 µl	20	0.8	0.16	0.4	0.08
5 µl- 50 µl	50	0.8	0.4	0.4	0.2
10 μΙ - 100 μΙ	100	0.6	0.6	0.2	0.2
20 µl- 200 µl	200	0.6	1.2	0.2	0.4
100 µl- 1 ml	1000	0.6	6	0.2	2
0.5 ml - 5 ml	5000	0.6	30	0.2	10
1 ml -10 ml	10000	0.6	60	0.2	20

Pipetman P / Neo

Pipetman Ultra

Here are comparative tables for maximum permissible errors between ISO 8655 and Gilson. ISO 8655 maximum permissible errors are very wide, so as to have a conformity-basis for all pipettes. At Gilson our knowledge and kno-how allows us to be more stringent, which means the best pipette-performance.

Model (Reference)	Volu (µL		Ma: Gils Systematic error (µL)		rmissible Er ISO 8 Systematic error (μL)	8655 Random
P2 (F144801) P2N (F144561) U2 (F21021)	Min Max.	0.2 0.5 2	± 0.024 ± 0.025 ± 0.030	≤ 0.012 ≤ 0.012 ≤ 0.014	± 0.08 ± 0.08 ± 0.08	≤ 0.04 ≤ 0.04 ≤ 0.04
P10 (F144802) P10N (F144562) U10 (F21022)	Min. Max	1 5 10	± 0.025 ± 0.075 ± 0.100	≤ 0.012 ≤ 0.030 ≤ 0.040	± 0.12 ± 0.12 ± 0.12	≤ 0.08 ≤ 0.08 ≤ 0.08
P20 (F123600) P20N (F144563) U20 (F21023)	Min. Max.	2 5 10 20	± 0.10 ± 0.10 ± 0.10 ± 0.20	≤ 0.03 ≤ 0.04 ≤ 0.05 ≤ 0.06	± 0.20 ± 0.20 ± 0.20 ± 0.20	≤ 0.10 ≤ 0.10 ≤ 0.10 ≤ 0.10
P100 (F123615) P100N (F144564) U100 (F21024)	Min. Max.	10 20 50 100	± 0.35 ± 0.35 ± 0.40 ± 0.80	≤ 0.10 ≤ 0.10 ≤ 0.12 ≤ 0.15	± 0.80 ± 0.80 ± 0.80 ± 0.80	≤ 0.30 ≤ 0.30 ≤ 0.30 ≤ 0.30
P200 (F123601) P200N (F144565) U200 (F21025)		20 50 100 200	± 0.50 ± 0.50 ± 0.80 ± 1.60	≤ 0.20 ≤ 0.20 ≤ 0.25 ≤ 0.30	± 1.60 ± 1.60 ± 1.60 ± 1.60	≤ 0.60 ≤ 0.60 ≤ 0.60 ≤ 0.60
P1000 (F123602) P1000N (F144566) U1000 (F21026)		100 200 500 000	±3 ±3 ±4 ±8	≤ 0.6 ≤ 0.6 ≤ 1.0 ≤ 1.5	±8 ±8 ±8 ±8	≤ 3.0 ≤ 3.0 ≤ 3.0 ≤ 3.0

eppendorf

11, Technical Data

Repeater 4780	Inaccuracy %	Imprecision %
Combitips 0.5 ml 10 - 50 µl	± 1.5	± 1.0 to ± 0.6
Combitips 1.25 ml 25 - 125 µl	± 1.2	± 0.8 to ± 0.5
Combitips 2.5 ml 50 - 250 µl	± 1.0	± 0.6 to ± 0.4
Combitips 5.0 ml 100 - 500 µl	± 0.8	± 0.5 to ± 0.3
Combitips 12.5 ml 250 - 1250 µl	± 0.7	± 0.5 to ± 0.2

CALIBRATION OF FINNPIPETTE

PRINCIPLE

The pipette is calibrated with water "to deliver", when used according to the instructions. The pipettes are calibrated at the factory. Ordinarily no rec-alibration is necessary, but the pipettes are constructed to permit recalibration. The calibration is performed at 22°C and the following volume sett-

Finnpipette 11 Finnpipette 12 50 μl 200 μl Finnpipette 13 Finnpipette 14 1000 µl

PROCEDURE 1. Set the volume according to

the table.

2. Fill the pipette with water and deliver its contents into a preweighed small beaker or other container on the analyt-

ical balance 3. Record the weight to the nearest tenth of a milligram.

4. If the delivered volume dif-fers from the set volume by more than 1 per cent, adjustment should be made by turn-ing the calibration screw (02.05), clockwise, if the obtained volume was smaller, counterclockwise, if it was larger than the setting. Use calibration tool No. 1114. 5. Note that the thread of the

calibration screw is approximetely the same as for volume adjustment. The amount of correction required can therefore be estimated from the circular scale or part 06.05.
6. After adjustment recheck

the volume as in points 1-3 If the pipette delivers correctly at the set volume, it will automatically do so at all other vo-lumes of its range, due to its construction.

7. If a more accurate estimate of the delivered volume is desired, several weighings as describel in points 1–3 may be performed.

8. If parts 10.05 and/or 01.05

have been exchanged, the pipette must be recalibrated after reassembly, since it is the distance between the part 03.05 and the knob 01.05 that determines the volume deli-

vered.

9. Obviously the pipette can be calibrated for other solutions or liquids than water.